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Estimates and numerical computations show that under a sufficiently prolonged action of 
laser radiation on a target in a vacuum under plane geometry conditions of vapor transit, a 
significant part of the laser pulse energy is converted into thermal radiation emitted by the 
plasma. If the vapor layer thickness during the laser action becomes commensurate with the 
characteristic size of the spot being irradiated, r b, then the vapor density is reduced more 
rapidly in the lateral direction because of the jet broadening being initiated than in the 
case of transit in the form of a plane layer. The peripheral layers of the plasma torch be- 
come transparent and transmit the laser radiation practically totally, absorption is real- 
ized only near the target, and a quasistationary self-consistent heating and vapor transit 
mode is built up [5, 6]. The plasma parameters attained at the end of the plane transit stage 
later seem "to be frozen." Consequently, modes in which the thermal radiation becomes a 
dominant factor can be realized even in the stationary stage. Since the role of the thermal 
radiation grows as the pulse duration increases in the plane stage, as does the vapor layer 
thickness x, correspondingly, [1-4], then the radiation yield in the stationary stage grows 
as the spot size r b increases [6]. 

The quasistationary mode of intensively emitting plasma motion, in which the energy of 
an external source is liberated, is of considerable interest since its mass flow rate, pres- 
sure, density, temperature, and optical plasma thickness as well as emitted radiation flux 
density, are sustained at a constant level. This facilitates investigation of the optical 
properties of an emitting plasma and the practical utilization of the emitted radiation. In 
the quasistationary mode the plasma mass, pressure pulse, and emitted radiation pulse are 
proportional to the energy supplied, i.e., they can, in principle, grow to arbitrarily large 
values. 

Description of the radiation-gas dynamic processes occurring in a'two~dimensional non- 
stationary or quasistationary motion of a radiating vapor jet is a rather complex problem. 
We limit ourselves here just to the simpler case of radially symmetric steady motion of 
radiating vapors. We make certain additional assumptions about the nature of the radiation. 

i. We will describe the radiation transport in the quasivolume de-excitation approxima- 
tion [7, 8]. Let us compute the radiation intensity I e being propagated in a uniformly heated 
volume of substance under different values of its temperature T, density p, and characteristic 
dimension L. We find the integrated spectral radiation intensity F r on the volume boundaries 

15 a8 ~ (i. i) I~ = Be (I -- exp (-- ~sm)), B~ = ~4 exp (e/T) -- I ~ 

0 0 

Here Be i s  t h e  P l a n c k  f u n c t i o n ,  r i s  t h e  p h o t o n  e n e r g y ,  z i s  t h e  S t e f a n - B o l t z m a n n  c o n s t a n t ,  
Xs is the spectral mass absorption coefficient, and m is the characteristic magnitude of 
the specific gas mass. 

Let us evaluate the blackness coefficient ~ and the effective emission coefficient me 
by means of the relationship: 

Fr = ~T 4 = ~T4(i -- exp (-- ~em)). (1.2) 

Under the condition u~m<<l, which is satisfied for all radiation frequencies or photon 
energies e, we obtain from (i.i) 
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1~ = B ~ m ,  Fr = oT4• x~ = • ( 1 . 3 )  

Therefore, the effective emission coefficient ~e introduced goes over into the Planck 
coefficient ~p. However, the condition ~zm<< I is not actually satisfied in certain spec- 
trum ranges, primarily in lines, in a sufficiently dense, multiply ionized plasma, and it is 
necessary to take into account reabsorption, as is done in evaluating Xe by means of (i.i) 
and (1.2). If as a whole N << 1 and ~em<<1, in the spectrum, then from (1.2) 

F r = oTa~em, div qr = QrP~ Qr(T, p, m) = 4• 4, ( 1 . 4 )  

where Qr is the specific power of the energy loss (per unit mass). 

Computations [8] show that the dependence of ~e on L or m is rather weak; corres- 
pondingly ~e, also turns out to be sufficiently definite if the value of L is known in ad- 
vance. Taken as such in the problem of plasma heating by laser radiation is s T, p), 
the path of laser radiation with photon energy c 0. 

Figure 1 shows the dependence of n on T of a bismuth plasma heated by the radiation of a 
neodymium laser (e 0 = 1.16 eV) for two typical values of the bismuth plasma density p = 
6PL(6 = I; 0.1 - a and b), where the normal density of the bismuth vapors is PL = 9.39 mg/cm s. 
The values of nc are calculated by using (i.i) and (1.2) under the assumption that Np and the 
values of ~e = Mp, are found when using x a as the effective mean Rosseland absorption coeffi- 
cient. As is seen, the difference is sufficiently great. We note that the typical values 
of ~ for the T and 6 under consideration are of the order of 0.1. Furthermore, the expression 
(1.4) is even extended to the case of nonuniform heating. The foundation is that the temp- 
erature of the main part of the mass of an emitting and absorbing plasma varies relatively 
little at exact numerical solution of the RGD problem [2-4]. The application of ~e in (1.4) 
in every case has a much better foundation than the utilization of the Planck or Rosseland 
mean coefficients. 

2. The system of equations describing the radially symmetric stationary motion and heat- 
ing of a radiating plasma has the form 

dp q- pudu = O, p u s  = 1~I, h = p y / p ~  - -  t ) ,  ( 2 . 1 )  

i QT dr] + dF O. [(dh + udu) + ~ = 

Here  p i s  t h e  p r e s s u r e ,  p t h e  d e n s i t y ,  u t h e  v e l o c i t y ,  h t h e  p lasma e n t h a l p y ,  7 t h e  a d i a b a t i c  
i n d e x ,  S t h e  a r e a  o f  t h e  " c h a n n e l "  s e c t i o n  in  which  t h e  v a p o r  moves (S = 4~r  2 f o r  s p h e r i c a l l y  
s y m m e t r i c  f l o w ) ,  ~ i s  t h e  mass f low r a t e ,  and F i s  t h e  t o t a l  e n e r g y  f l u x  o f  l a s e r  r a d i a t i o n  
t h r o u g h  t h e  s e c t i o n  S (F = qs and q i s  t h e  f l u x  d e n s i t y ) .  

The e q u a t i o n s  o f  l a s e r  r a d i a t i o n  t r a n s p o r t  a r e  

dF- /d r  = kF-  ~ dF +/dr = - - k F  + ~ ( 2 . 2 )  

where F- is the energy flux of laser radiation directed towards the target surface, F + is 
the flux of reflected radiation, and F =F + - F- (F + > 0, F- > 0, F < 0), k =k(T, p) is the linear 
coefficient of laser radiation absorption. On the target surface, i.e., for r = r 0, F~ = 
krF ~ (k r is the reflection coefficient), and phase transition conditions are also satisfied in 
the subsonic evaporation wave 

p~u~S~ = ~rs Po = P~ + p~u~, ( 2 . 3 )  

( t u~) + F= fVIQv, Tw = T~ (p~). M h,o = - 

H e r e  P0 i s  t h e  p r e s s u r e  ahead  o f  t h e  e v a p o r a t i o n  wave ( i n  t h e  s o l i d ) ,  T v i s  t h e  phase  t r a n s i -  
t i o n  e q u i l i b r i u m  t e m p e r a t u r e ,  Qv i s  t h e  h e a t  o f  e v a p o r a t i o n ,  t h e  s u b s c r i p t  w r e f e r s  t o  t h e  



parameters behindthe evaporation wave, and F w is the total laser and thermal radiation flux 
reaching the evaporation wave. Target evaporation due to the flux of thermal radiation is 
not taken into account below for specific computations of the problem. 

On the outer boundary r + r~ 

F - + F ~  = %So, p--+O. (2 .4)  

The equation of state and the optical properties of the vapor are given in tabular form 

V pv, (2 .5)  pv = N ( T ,  O)R'T, h = c(T, O)B'T = v - - I  

R" = R / A , k  = k(%, T, 9), • = • T , p ) , v = I / 9  

(R is the universal gas constant and A is the atomic weight of the substance). 

The equation of state in differential form is 

dh A dv alP=o, A v = ( l  + OlnCl{t  OlnN] -1 (2 .6 )  
h v T - - A p ' - p "  ~ ] ~  + O l n T ]  

?Av C t O ln N 1 OlnC 
A.=A, t--o--fUy/+o-N-7, l + ( A p - - t ) ?  N ?--1 '  

where c s is the speed of sound, and ~d is the differential adiabatic index. The system 
(2.1) has a singular point corresponding to the passage through the speed of sound. For 
the constants C and N, we have ~d = ~, Av = Ap = i. From (2.1) and (2.6) 

(t -- u2/c~) du/u = --  (dF/Mh + Qrdr/uh + dS/S). (2 .7 )  

In the "sonic" section (the flow velocity u equals the speed of sound Cs), the term with 
du/u vanishes. We denote the parameters in this section (we call it critical) by the sub- 
script *. If continuous gas acceleration occurs, then du does not change sign. The rela- 
tionship dF/Mh, + Q~ dr/u,h, + dS/S, should be satisfied when going through the speed of 
sound. 

Using the transport equation (2.2), the condition u* = c~, and the definition of Q$, we 
obtain in the case of a spherically symmetric flow 

k , r , q , ( t - - % )  + 2p,h,u,  = O, % = - - Q ~ p , / k , q ,  (2 .8)  

(% is the relative power of the energy losses due to radiation at the critical point). 

Therefore, a definite relationship between the energy liberation power due to laser 
radiation (the laser radiation flux density is q, = F,/S,, where q, < 0), the energy losses 
by thermal radiation, and the hydrodynamic energy flux should be satisfied at the critical 
section. 

3. To emerge from the singular point, it is necessary to execute an expansion in a small 
parameter. It is convenient to represent the given system and the conditions at the singular 
point in dimensionless form by referring all the parameters to their values in the sonic sec- 
tion: ~ = r/r,, ~ = u2/u~, ~ = p/p,, F = F/F,, F+ = F+/F,, etc. For convenience, the bars 
over the dimensionless variables are omitted below. We write the system (2.1) and (2.2) as 

i ep=--gvdpdg, OI/}S  = t, ( 3 . 1 )  

dr dF- dF + = _ _  klkF+. dh + ( v - - i ) d g  + ~ ldF  + @q-~gQ, = O,--~--r= k l kF-  ~ dr 

Here Cq = r,Q~/h,u,; ~f = F,/~lh,; v = i + ~/2~,; ~, = ~,/(~, - I); kf = k,r,; • = ~o/kfCf. 
Using (2.5) and the energy equation, we find a differential equation to determine g(r~ from 
(3 .1 )  

a~ h i -- g �9 -- 2r -- r kl k (F+ + F-) + 

=~?d/~,~'d, ~ V/(V i), 

analogous  to  ( 2 . 7 ) ;  however, in  c o n t r a s t  to  ( 3 . 2 ) t h e  r e a l  equa t ion  of  s t a t e  of  the  gas ( 2 . 5 ) ,  
(2 .6 )  i s  used,~ and r e f l e c t i o n  of  l a s e r  r a d i a t i o n  from the  t a r g e t  s u r f a c e  i s  taken  i n t o  account .  

At the singular point 



r---- g = p =  p =  F =  S-= h - -  k---- Q , =  ~ = -  1, ( 3 . 3 )  
,+ 

F + = ~ . / F . ,  F -  = F . / F . ,  (F + + F - )  = Z (I + 2Av/aOq) 
To emerge from the singular point of the system, we obtain an expansion in r at the point r = 
1 to first-order accuracy, where we represent the dependences k(T, p), re(T, p),, T(h, p) near 
the singular point in the power-law form k = h-~p~, xe =h-%p ~e , T = h~Tp$ T, and neglect 
changes in A v and ~. 

For (r - i) << I, g - 1 = Zg(r - i). To determine the slope Zg of the integral curve, we 
have a quadratic equation 

, '] a z ~ + b z g + c = O ,  a = ~ v ,  b = - - 2  A~--(~--I)(I+a)+T~ + (3.4) 

ca[ '] 

The method of  s o l v i n g  the  sys tem ( 3 . 1 )  and ( 3 . 2 )  wi th  t he  boundary c o n d i t i o n s  ( 2 . 3 )  and 
(2.4) and a singular sonic point at which the relationships (3.3) are satisfied in the case 
when reradiati0n is not taken into account (Qr = 0) is elucidated in [5, 6]. We used a simi- 
lar method also in the investigation of the stationary transit mode of vapor heated by a flux 
of fast particles or by thermal radiation fluxes in the radiant heat conduction mode [10, ii]. 
Consequently, we discuss here just the Characteristic singularies associated with taking 
reradiation into account. 

Integration of the system (3.1) and (3.2) starts from the singular point where the values 
of T=~ and p, are given. Values of h,, p:'.-, Cs~'~, k,, me ,and Qrare found by using tables of 
thermodynamic and optical properties of substances. 

Integrating the energy equation (2.1) from the target surface (r = r 0) to the critical 
point (r = re) and using the boundary conditions (2.3), we find 

and the dimensionless integral 

r,Q*~ Q u. F, h , + - ~  + - r - + - -  - - - Q ~ ,  ( 3 . 5 )  
M u, 

1 ,I Q,o" (r) 
o =   -TW, a 7 , .  

roff* 
The exact value of 8 will be known only after integration of the system. Its value, from 

the solution without reradiation taken into account, i.e., for Q~ = 0, can be taken as the 
first approximation of the computations starting with modifications in which the reradiation 
is small (X << i, X = -Q~p,/k,q,). The role of the reradiation is attenuated as T, and r, 
diminish. Latter, as X increases, extrapolation of the values of 8 obtained in the previous 
computations can be used as the initial e. 

If the value of 8 is given, then the relationship (3.5) and the conditions (3.3) permit 
determination of all the parameters in the critical section: r,, F,, and ~ = p,u,S,. Emergence 
from the singular point is realized analogously [5, 6, 10, Ii] by expanding the solution near 
the critical section (3.4). Then the system of equations is integrated from the singular point 
towards the obstacle up to the intersection with the phase equilibrium curve, and r 0 and a new 
value of 8 are determined. Substituting 8 into the relation (3.5), we refine the parameters 
in the critical section and repeat the computation. The values of the parameters at the cri- 
tical point usually converge after several iterations. 

Furthermore, the computation of the supersonic flow zone is carried out (with increasing 
r) until F emerges at the stationaryvalue F = F=. 

As X + 1 the computation by the method mentioned becomes difficult, and the solution is 
responsive to the choice of 8. It is proposed to analyze the limit "radiation" flow mode 
(for X = i) separately. 

4. Let us estimate the plasma parameters and its thermal radiation flux under the action 
of a laser on a spherical bismuth target. The equation of state and optical properties of 
a bismuth plasma are approximated in the range T = 5-30 eV by the power-law dependencies (ta- 
bles in [9] are used) 
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e = 2,04Tl"S5 -~ Xo = 2.4.10STt'55~ ( 4 .  i )  

~l = 0 .25T-~176  ~ • = 6.  ~.0~_TZ'~176 

where e is the specific internal energy of the plasma, k J/g, • is the absorption coefficient 
of laser radiation, cm2/g, • is the effective absorption coefficient, cm2/g, and 6 = O/PL 
is the relative density. 

We estimate the plasma parameters to a first approximation by neglecting radiation energy 
losses (Qr = 0). For sufficiently high plasma temperatures, when h, >> Qv, the energy balance 
equation in the sonic section is written in the form 

q ,  = ~ O , u , h ,  ( 4 . 2 )  

(here and henceforth q, > 0). The plasma characteristic optical thickness in the critical 
section equals 

k , r ,  = 1/%, k ,  = xSp,,.  % = (? + t ) /4 .  ( 4 . 3 )  

Using (4.2) and (4.3) and the approximation (4.1), we obtain relationships between the 
parameters in the critical section 

, ~ 0.23 0.50 -o 46 0.2r~O.77q~O.42s~.~4. (4.4) T , = l . o o r ,  q ,  ~ o " ,  ~ , =  

Here and henceforth, the dimensionality of the quantities is the following: q,, MW/cm a, r*, cm, 
T,, eV, p,, MPa, Co, eV; 6, = P*/PL (PL = 9"39"10-3 g/cm3)" 

Using (4.4), we estimate the relative power of the radiation energy loss at the critical 
point 

$ 4 $ % = 4 •  ~ T , / •  ~ .~ o.s3  1 o -I 3 = v . ~ O q ,  r ,"  e o ~ . ( 4 . 5 )  

The estimate (4.5) is valid in the case of low energy losses by radiation (• ~ i); how- 
ever, by using it the characteristic values of the parameters can be estimated roughl~ for 
which the radiation energy losses become significant (X x i): r~,, -- 2.2q~.-~ T~ = i 
1.62q~'3e~ ~ For finite energy losses by radiation the energy balance equation is written 
in the form 

q,(i--xOk,r.) = ?+t . --~--p,a,u,. (4.6) 

Comparing (4.6) with (4.2), and (2.8) with (4.3), we conclude that to obtain the given 
values of T, and p, at the critical point when taking account of the radiation energy losses, 
it is necessary to increase the laser radiation flux density and to change the radius r, or 

0 Aq 1 + 4X8/(I X)(~ + i), x, 0 = the optical thickness x, = k,r,: q, = Aqq,, = - = ATe,, A~ 
[i - x(i - 4el(~ + i))] -~ 

When the optical and thermodynamic properties of the vapor are given in a power-law 
form, the problem becomes self-similar at high temperatures (h, >> Qv), where the self- 
similar profile is Characterized by One parameter, for instance, the fraction X of the energy 
losses by reradiation at the critical point. Here 8 = 8(X). 

5. We shall present certain results of numerical computations of the quasistationary 
flow under the action of a neodymium laser on a spherical bismuth target in a vacuum. The 
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parametric distributions along the radius are given in Fig. 2 for a radiation energy loss 
X = 0.68 at the critical point. All the quantities are referred to their values at the cri- 
tical point (for T, = I0 eV and p* = 2.8"10 -3 g/cm 3, we have r, = 3.6"10 -2 cm, F, = 10.7 MW, 
u, = 6.12 km/sec, p, = 88 MPa, Q$ = 1.35-10 +7 MW/g, q, = F,/4~r~ = 0.64 GW/cm 2, and the laser 
radiation flux density at the target in the absence of shielding is q0 = F~/4~r~ = 1.46 GW/ 
ON2). 

Let us note the characteristic singularities of the flow. Near the target surface 
there is a heating wave front, and the maximal vapor temperature is close to the value T, at 
the critical section. The radiation energy losses Qr are maximal in the sonic section. 
Laser radiation energy absorption is realized at the distances r~ 2r,. 

The flow pattern is qualitatively similar to the case when reradiation is not taken into 
account (compare Figs. 2 and 3 where:the parameter distributions are represented for X = 0). 
However, there are also certain differences. Thus when the radiation energy loss is taken 
into account the temperature in the supersonic part of the jet, i.e., for r > r,, drops 
somewhat more rapidly with r, while F grows more rapidly. As X increases, the part of the 
laser radiation energy being absorbed in the supersonic flow zone grows, i.e., the ratio 
F~/F, (Fig. 4) increases. The sonic point approaches the surface slightly as X increases 
(the ratio r0/r, grows), while the ratio P0/P* (the ratio betw~-n the pressure at the target 
P0 and the pressure p, at the critical point) diminishes somewhat; the value 8 (3.6) is re- 
duced insignificantly as X grows. 

The thermal radiation flux incident on the target is calculated according to the re- 
r~ 

lationship F~= 2~ ~ (I--~l--(ro/r) ~) xQrprZdr in the quasivolume de-excitation approximation 

9 0 

and under conditions of multilateral irradiation of an obstacle. The thermal radiation flux 
r~ 

~ ~ ~d 0 being de-excited in a vacuum is F r d~ Qr~r = r--ft. 
9 0 

The relative fractions of de-excitation in a vacuum Fr/F~ (F~ is the delivered laser 
radiation flux) and at the target F~/F~ are presented in Fig. 5. For X = 0.68 F~/F~ = 0.4, 
while at the target it is F~/F~ = 0.2, i;e., in this case the total radiation energy losses 
are ~ = 60%. Taking account of the intrinsic plasma radiation resulted in a reduction of 
1.62 times in the maximal plasma temperature T,, while the pressure at the target was re- 
duced 1.33 times as compared with the case when reradiation was not taken into account (X = 
0). However, it should be kept in mind that obstacle evaporation by thermal radiation and 



its heating by the vapors being formed were not taken into account in this formulation. We 
note that under multilateral target irradiation conditions, additonal target evaporation ow- 
ing to incident thermal radiation will result in partial compensation of the pressure diminu- 
tion because of radiation energy loss. A quantitative representation of the role of this 
latter factor can be obtained based on results of numerical computations [2-4] of the plane 
problem or assumptions about absorption of the emitted radiation in an ionization and evap- 
oration wave (the phase transition temperature of "ionization", T v, in (2.3) is correspondingly 
replaced by a higher T i at which plasma clarification occurs for this radiation). 

Using the self-similarity of the problem when the power laws (4.1) are satisfied, the 
characteristic plasma parameters can be estimated by changing the values in the critical sec- 
tion while retaining the same fraction of de-excitation X. For example, as the temperature 
ture diminishes to T, = 5 eV for X = 0.68, q0 = 145 MW/cm ~, r 0 = 0.21 cm, P0 = 40 MPa, and 
u, = 3.3 km/sec. The stationary mode build-up time is t, ~ r,/u, z 0.75 ~sec. According 
to experiments [12], the "scintillation" time, i.e., the time of development of a shielding 
plasma layer, is less than the mentioned build-up times for the stationary mode for a flux 
density on the order of i00 MW/cm 2. 

Therefore, a quasistationary mode is established, under sufficiently prolonged exposure 
of a spherical target to laser radiation, for the scattering and heating of vapors intensiuely 
emitting thermal radiation here, whose role is magnified as the target size and the laser 
radiation flux density increase. 

A number of assumptions is made for the quantitative estimate of the role of radiation 
effects by using the stationary model described. Thus, the phase transition is considered a 
quasi-equilibrium. The question of the real structure of the evaporation wave remains open. 
However, a comparison of computations under this assumption with experiments [12] shows that 
it permits a fair description of the parameters in the evaporation wave even in a mode without 
shielding of the plasma surface. These parameters cease to play a substantial role generally 
under !'plasma" mode conditions, which are indeed examined here since the temperature of the 
main energy liberation zone exceeds the temperature in the phase transition zone greatly 
(T m >> Tv). We note that measurements yielded a quite fair agreement with computation by a 
stationary model in the range of exposure spot characteristic flux densities and radii taken 
as examples above. The target was aluminum here, and in conformity with estimates [6], the 
reradiation turned out to be an insubstantial factor. The estimates cited show that the 
passage over to a heavy-element target significantly magnifies the role of the radiation 
effects and permits their study experimen.tally, even undee conditions similar to [13]. 

The action of the thermal radiation emitted by the hot plasma on the surface was ne- 
glected in the model taken above. Meanwhile, the additional target evaporation due to the 
thermal radiation incident on it can be compensated partially by the pressure diminution in 
the plasma as it cools because of radiation. On the other hand, an increase in the mass 
flow rate reduces the plasma temperature and attenuates the radiation. Computations were 
performed for a one-dimensional spherically symmetric nonstationary radiation-gasdynamic 
problem on the action of neodymium laser radiation on a spherical bismuth target for confir- 
mation. Target evaporation by thermal radiation and reflection of the laser radiation from 
the surface (with a reflection coefficient determined experimentally in [12]) were taken into 
account. The flux of thermal radiation was determined by solving the radiation transport 
equation. The computation method is described in [14]. For a more accurate comparison with 
computations using this model, the plasma equation of state and its optical properties were 
given by the power-law dependences (4.1). 

We now present the results of the computation for q0 = 1.46 GW/cm 2 and r 0 = 0.03 cm. A 
computation showed that emergence in the stationary mode occurs at 0.3-0~4 ~sec, which some- 
what exceeds the estimate presented earlier. The parametric distribution along the radius 
turned out to be qualitatively quite close to that obtained above; in particular, the temp- 
erature maximum is near the sonic point. A comparatively narrow cold domain (with a temp- 
erature to 3-5 eV and 0.01 cm thickness) occurred near the target because of the additional 
evaporation and heating of the vapor by the thermal radiation. However, its presence did 
not affect the plasma parameter characteristics substantially. Thus, the temperature turned 
out to be only 20% lower than in the stationary model with the quasivolume de-excitation 
(8.1 eV instead of i0 eV), and the pressure was 10% lower (190 MPa instead of 215 MPa). The 
radiation losses in a vacuum were 51% (instead of 40%). All the radiation incident on the 
target was absorbed by it since its spectrum belongs to the far vacuum ultraviolet (20% was 
incident on the target in the stationary model). 



Therefore, utilization of the model described above permits giving an appraisal of the 
role of the radiation effects (for not-too-strong de-excitation) and indicating the range 
of the laser pulse parameters where their experimental study and utilization are possible. 
A certain refinement of the stationary model can be performed by introducing the vapor evap- 
oration and ionization waves by replacing T v by the higher temperature T i at which vapor 
bleaching occurs for the thermal radiation of the hot plasma. Further refinement requires 
the involvement of more tedious numerical Computations (of the type described in [2-4, 14]). 
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